太阳城集团(新网)娱乐城要怎么才能赚钱-澳门太阳城博彩-澳门太阳城集团车模深港在线-威廉希尔娱乐官网

您現(xiàn)在的位置: 首頁(yè)- 師資隊(duì)伍- 提高采收率研究所

楊鈺龍 副研究員(副教授) 油氣田開(kāi)發(fā)工程/石油與天然氣工程

楊鈺龍

副研究員(副教授) 博士/碩士導(dǎo)師

Petroleum Science 副主編

辦公室:新綜合樓北樓A310

郵箱:[email protected]


個(gè)人簡(jiǎn)介

2017年獲得澳大利亞阿德萊德大學(xué)石油工程專(zhuān)業(yè)博士學(xué)位,2017年6月至今在中國(guó)石油大學(xué)(北京)非常規(guī)油氣科學(xué)技術(shù)研究院工作,主要從事提高采收率相關(guān)的多相多組分流動(dòng)及表/界面現(xiàn)象的研究。


研究方向

多相多組分流動(dòng);表/界面現(xiàn)象

歡迎認(rèn)真、踏實(shí)、對(duì)基礎(chǔ)研究有濃厚興趣和強(qiáng)烈好奇心的同學(xué)加入課題組,一起探索未知。


教育背景

2012.09-2016.09,博士,澳大利亞阿德萊德大學(xué),石油工程

2009.09-2012.06,碩士,中國(guó)石油大學(xué)(北京),油氣井工程

2005.09-2009.06,學(xué)士,中國(guó)石油大學(xué)(北京),石油工程


工作經(jīng)歷

2022.07至今,副研究員,中國(guó)石油大學(xué)(北京)非常規(guī)油氣科學(xué)技術(shù)研究院

2017.06-2022.06,助理研究員,中國(guó)石油大學(xué)(北京)提高采收率研究院


科研項(xiàng)目

[1]  國(guó)家自然基金面上項(xiàng)目,致密砂巖油藏CO2納米氣泡流體滲吸驅(qū)油微觀(guān)機(jī)理及數(shù)學(xué)表征,2025.01-2028.12. (主持)

[2]  國(guó)家自然基金青年項(xiàng)目,低滲油藏納米聚合物微球與低礦化度水復(fù)合深部調(diào)驅(qū)機(jī)理研究,2019.01-2021.12. (主持)

[3]  頁(yè)巖氣水平井井筒完整性失效機(jī)理與控制方法研究,國(guó)家自然聯(lián)合基金重點(diǎn)項(xiàng)目,2018-2021. (參與)

[4]  低滲/特低滲油藏片狀納米材料-微米自適應(yīng)橋接顆粒協(xié)同控竄-調(diào)流-驅(qū)油理論研究,國(guó)家自然基金面上項(xiàng)目,2022-2025. (參與)

[5]  表面活性劑在致密油藏裂縫-微納米孔隙的多尺度滲析機(jī)理研究,國(guó)家自然基金面上項(xiàng)目,2019-2022. (參與)

[6]  頁(yè)巖油儲(chǔ)層納微米孔喉中油-CO2-水多元體系相行為與流動(dòng)機(jī)制研究,國(guó)家自然基金面上項(xiàng)目,2021-2024. (參與)

[7]  低滲/特低滲油藏片狀納米材料-微米自適應(yīng)橋接顆粒協(xié)同調(diào)驅(qū)機(jī)理研究,國(guó)家自然基金面上項(xiàng)目,2022-2025. (參與)

[8]  雙親納米流體制備及其提高采收率機(jī)理研究,中石油創(chuàng)新基金,2021-2022. (參與)

[9]  強(qiáng)非均質(zhì)礫巖油藏CO2吞吐機(jī)理與方案優(yōu)化研究,中石油戰(zhàn)略合作項(xiàng)目專(zhuān)題任務(wù),2020-2024. (專(zhuān)題負(fù)責(zé)人)

[10] 低滲/特低滲油藏微/納米功能材料深部調(diào)驅(qū)機(jī)理研究,中國(guó)石油大學(xué)(北京)科研啟動(dòng)基金,2017-2020. (主持)

[11] CO2驅(qū)氣水交替WAG變比設(shè)計(jì)及測(cè)試,中石化勝利油田勘探開(kāi)發(fā)研究院,2020.(負(fù)責(zé))

[12] 二氧化碳驅(qū)混相驅(qū)波及物理模擬測(cè)試合同,中石化勝利油田勘探開(kāi)發(fā)研究院,2020.(負(fù)責(zé))

[13] 單井吞吐注氣物理模擬實(shí)驗(yàn),中石化石油勘探開(kāi)發(fā)研究院,2017-2018.(負(fù)責(zé))

[14] 縫洞型油藏井間氣竄影響因素實(shí)驗(yàn)研究,中石化石油勘探開(kāi)發(fā)研究院,2017-2018.(負(fù)責(zé))


發(fā)表論文

期刊論文

[1]     Water impact on adsorbed oil detachment from mineral surfaces by supercritical CO2: A molecular insight. Geophysical Research Letters, 51(9), p.e2024GL108208. (自然指數(shù)期刊,中科院1區(qū)TOP, 2022-2023影響因子: 5.2)

[2]     Impact of temperature and salinity on fines detachment: AFM measurements and XDLVO theory. Petroleum Science, 2024 (In Press 中科院1區(qū)TOP, 2022-2023影響因子: 5.6)

[3]     Review on Physical and Chemical Factors Affecting Fines Migration in Porous Media. Water Research, 2022, 214, 118172. (自然指數(shù)期刊,中科院1區(qū)TOP, 2022-2023影響因子: 13.4)

[4]     Similarity-based Laboratory study on CO2 huff-n-puff in tight conglomerate cores. Petroleum Science. 2022, 20(1), 362-369. (中科院1區(qū)TOP, 2022-2023影響因子: 5.6)

[5]     Morphology of MoS2 nanosheets and its influence on water/oil interfacial tension: A molecular dynamics study. Fuel, 2022, 312, 122938. (中科院1區(qū)TOP, 2022-2023影響因子: 7.4)

[6]     A Novel Polymer Gel with High-Temperature and High-Salinity Resistance for Conformance Control in Carbonate Reservoirs. Petroleum Science. 2022, 19(6), 3159-3170. (In Press,中科院1區(qū)TOP, 2022-2023影響因子: 5.6)

[7]     Oil Displacement Performance Using Bilayer-Coating Microspheres. Industrial & Engineering Chemistry Research, 2021, 60(5): 2300-2313. (中科院3區(qū), 2020-2021影響因子: 3.720)

[8]     The effect of nanoparticles on reservoir wettability alteration: a critical review. Petroleum Science, 2021, 18, 136-153. (中科院1區(qū)TOP, 2020-2021影響因子: 4.090)

[9]     Profile Control Using Fly Ash Three-Phase Foam Assisted by Microspheres with an Adhesive Coating. Applied Sciences, 2021, 11(8), 3616. (中科院3區(qū), 2020-2021影響因子: 2.679)

[10] Study on the Impact Pressure of Swirling-Round Supercritical CO2 Jet Flow and Its Influencing Factors. Energies, 2021, 14(1), 106. (中科院3區(qū), 2020-2021影響因子: 3.004)

[11] Stochastic and upscaled analytical modeling of fines migration in porous media induced by low-salinity water injection. Applied Mathematics and Mechanics, 2020, 41(3), 491-506. (中科院1區(qū)TOP, 2020-2021影響因子: 2.866)

[12] Enhanced Oil Recovery Using Oleic Acid-Modified Titania Nanofluids: Underlying Mechanisms and Oil-Displacement Performance. Energy & Fuels, 2020, 34(5), 5813-5822. (中科院3區(qū), 2020-2021影響因子: 3.605)

[13] Kaolinite Detachment from Silica Substrate - Laboratory and Theoretical Study. International Journal of Water and Wastewater Treatment, 2020, 6(3), 1-7.

[14] Synthesis of α-starch based nanogel particles and its application for long-term stabilizing foam in high-salinity, high-temperature and crude oil environment. Journal of Petroleum Science and Engineering, 2020, 191, 107185. (中科院2區(qū)TOP, 2020-2021影響因子: 4.346)

[15] Gas injection for enhanced oil recovery in two-dimensional geology-based physical model of Tahe fractured-vuggy carbonate reservoirs: karst fault system. Petroleum Science, 2020, 17(2), 419-433. (中科院1區(qū)TOP, 2020-2021影響因子: 4.090)

[16] Study on the plugging performance of bilayer-coating microspheres for in-depth conformance control: experimental study and mathematical modeling. Industrial & Engineering Chemistry Research, 2019, 58(16), 6796-6810. (中科院3區(qū), 2020-2021影響因子: 3.720)

[17] Fines migration in geothermal reservoirs: Laboratory and mathematical modelling. Geothermics, 2019, 77:344-67. (中科院2區(qū), 2020-2021影響因子: 4.284)

[18] Exact Solutions for Nonlinear High Retention-Concentration Fines Migration. Transport in Porous Media, 2017, 119(2):351-372. (中科院3區(qū), 2020-2021影響因子: 3.019)

[19] Slow migration of detached fine particles over rock surface in porous media. Journal of Natural Gas Science and Engineering, 2016, 34:1159-1173. (中科院2區(qū), 2020-2021影響因子: 4.965)

[20] Mathematical modelling of fines migration in geothermal reservoirs. Geothermics, 2016, 59: 123-133. (中科院2區(qū), 2020-2021影響因子: 4.284)

[21] Deep bed and cake filtration of two-size particle suspension in porous media. Journal of Petroleum Science and Engineering, 2015, 126:201210. (中科院2區(qū)TOP, 2020-2021影響因子: 4.346)

[22] Laboratory-based mathematical modelling of graded proppant injection in CBM reservoirs. International Journal of Coal Geology, 2014, 136:1-16. (中科院1區(qū)TOP, 2020-2021影響因子: 6.806)

[23] Slow migration of mobilised fines during flow in reservoir rocks: Laboratory study. Journal of Petroleum Science and Engineering, 2014, 122, 534-541. (中科院2區(qū)TOP, 2020-2021影響因子: 4.346)

[24] Modeling the pressure characteristics of parallel chokes used in managed pressure drilling and related experiments. Petroleum Science, 2012, 9(3): 363-369. (中科院1區(qū)TOP, 2020-2021影響因子: 4.090)

會(huì)議論文

[1] A New Phenomenon of Slow Fines Migration in Oil and Gas Fields (Laboratory and Mathematical Modelling). SPE-179027-MS. SPE International Conference and Exhibition on Formation Damage Control, Lafayette, Louisiana, USA, 2016.02.24-02.26

[2] Fines Mobilisation by Low-Salinity Water Injection: 3-Point-Pressure Tests. SPE-178947-MS. SPE International Conference and Exhibition on Formation Damage Control, Lafayette, Louisiana, USA, 2016.02.24-02.26

[3] New Laboratory Method to Assess Formation Damage in Geothermal Wells. SPE-174199-MS. SPE European Formation Damage Conference held in Budapest, Hungary, 2015.06.03-06.05

[4] Modelling of productivity decline in geothermal reservoirs due to fines migration induced formation damage. World Geothermal Congress, Melbourne, Australia, 2015.04.19-04.25

[5] Prediction of Productivity Decline in Oil and Gas Wells Due to Fines Migration: Laboratory and Mathematical Modelling. SPE-171475-MS. SPE Asia Pacific Oil & Gas Conference and Exhibition, Adelaide, 2014.10.14-10.16

合作出版專(zhuān)著

[1] Fines Migration in Aquifers and Oilfields: Laboratory and Mathematical Modelling. Flow and Transport in Subsurface Environment (2018): 3-67. (Springer)

[2] New Development of Air and Gas Drilling Technology. In Drilling. 2018, 163 (IntechOpen).

[3] Formation Damage Challenges in Geothermal Reservoirs. In Formation Damage During Improved Oil Recovery (2018): 447-497. (Elsevier)