
吳海榮
博士,副研究員,博導(dǎo)、碩導(dǎo),校青年拔尖人才
辦公室:新綜合樓北樓A301
手機(jī):15010260120
E-mail: [email protected]; [email protected]
個(gè)人簡(jiǎn)介
吳海榮,博士,副研究員,博導(dǎo)、碩導(dǎo),2016年入選中國(guó)石油大學(xué)(北京)重點(diǎn)學(xué)科青年拔尖人才計(jì)劃,2019年入選北京市優(yōu)秀人才培養(yǎng)資助計(jì)劃。2015年9月從荷蘭University of Twente MESA+納米技術(shù)研究所博士畢業(yè),同年10月起至今在中國(guó)石油大學(xué)(北京)工作。主要從事提高采收率與油田化學(xué)、納米驅(qū)油劑開(kāi)發(fā)與應(yīng)用、膠體與界面化學(xué)等方面的研究。近年來(lái),先后主持國(guó)家自然基金項(xiàng)目2項(xiàng)、北京市優(yōu)秀人才培養(yǎng)資助項(xiàng)目1項(xiàng)、北京市自然科學(xué)基金1項(xiàng)、中石油創(chuàng)新基金項(xiàng)目1項(xiàng),油田企業(yè)委托項(xiàng)目十余項(xiàng);作為科研骨干,完成和參與十三五國(guó)家科技重大專(zhuān)項(xiàng)等國(guó)家級(jí)和橫向課題十余項(xiàng),獲省部級(jí)獎(jiǎng)勵(lì)3項(xiàng)。在Petroleum Science、Fuel等本領(lǐng)域高水平期刊上公開(kāi)發(fā)表學(xué)術(shù)論文60余篇,其中第一作者和通訊作者SCI論文30余篇;此外,獲邀在第五屆國(guó)際提高采收率會(huì)議、美國(guó)化學(xué)年會(huì)等國(guó)際會(huì)議上做口頭報(bào)告多次。
工作經(jīng)歷
2016.06-至今 中國(guó)石油大學(xué)(北京) 副研究員,校青年拔尖人才
2015.10-2016.06 中國(guó)石油大學(xué)(北京) 助理研究員
教育背景
2011.09-2015.09 荷蘭特文特大學(xué)MESA+納米技術(shù)研究所 博士研究生
2009.07-2011.07 中科院蘭州化學(xué)物理研究所固體潤(rùn)滑國(guó)家重點(diǎn)實(shí)驗(yàn)室 碩士
2008.09-2009.07 中國(guó)科學(xué)院研究生院(現(xiàn)中國(guó)科學(xué)院大學(xué)) 碩士
2003.09-2007.07 山東師范大學(xué) 大學(xué)本科
研究方向
老油田提高采收率理論與技術(shù)
非常規(guī)油氣藏提高采收率理論與技術(shù)
智能納米驅(qū)油劑與Pickering乳狀液
調(diào)剖堵水理論與技術(shù)
油田開(kāi)發(fā)膠體與界面化學(xué)
招生方向
油氣田開(kāi)發(fā)工程(學(xué)碩),石油與天然氣工程(專(zhuān)碩)
石油與天然氣工程(學(xué)術(shù)博士、工程博士)
主講課程
界面化學(xué)(核心課程),授課對(duì)象:碩士、博士研究生
科研項(xiàng)目
國(guó)家自然基金面上項(xiàng)目,Pickering乳液型活性原油體系開(kāi)發(fā)與調(diào)驅(qū)機(jī)理研究,2024.01-2027.12,主持
國(guó)家自然基金青年項(xiàng)目,開(kāi)關(guān)型兩性/陰離子表面活性劑驅(qū)油體系構(gòu)筑與協(xié)同增效機(jī)理研究,2024.01-2026.12,主持
北京市優(yōu)秀人才培養(yǎng)資助青年骨干個(gè)人項(xiàng)目,表面改性納米顆粒改善低滲透油藏巖石潤(rùn)濕性及其提高采收率研究,2018.10-2020.10,主持
北京市自然基金青年基金項(xiàng)目,2020.01-2021.12,主持
中國(guó)石油大學(xué)(北京)拔尖人才資助項(xiàng)目,2015.12-2019.12,主持
中國(guó)石油科技創(chuàng)新基金,雙親納米流體制備及其提高采收率機(jī)理研究,2020.12-2022.12,主持
中海油田服務(wù)股份有限公司天津分公司項(xiàng)目,Pickering乳液調(diào)剖劑體系研究,2021.07-2022.12,主持
中國(guó)石油天然氣股份有限公司勘探開(kāi)發(fā)研究院廊坊分院,致密油藏納米驅(qū)油劑研究及作用機(jī)理表征,2017.01-2018.03,主持
中國(guó)石油天然氣股份有限公司長(zhǎng)慶油田分公司油氣工藝研究院,新型高效表面活性劑類(lèi)驅(qū)油劑研發(fā)與評(píng)價(jià)項(xiàng)目,2023.11-2024.05,主持
中石油戰(zhàn)略合作科技專(zhuān)項(xiàng),強(qiáng)非均質(zhì)礫巖油藏CO2吞吐機(jī)理與方案優(yōu)化研究, 2020.01-2024.12,科研骨干
中國(guó)石油化工股份有限公司,新型表面活性劑綠色高效合成及動(dòng)態(tài)界面行為研究,2020.07-2022.12,科研骨干
十三五國(guó)家科技重大專(zhuān)項(xiàng)課題,復(fù)雜油氣田地質(zhì)與高效鉆采新技術(shù)-低滲-致密油藏高效提高采收率新技術(shù),2017.01-2020.12,科研骨干
代表性期刊論文(第一或通訊作者)
Synergistic interfacial adsorption behavior between amino acid surfactant and sodium dodecyl benzene sulfonate, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2025, 722, 137309
Enhanced oil recovery using amphiphilic nanomaterials with tailored functionalities: a review, Journal of Molecular Liquids, 2025, 425, 127190
Emulsion properties and plugging performances of active crude oil enhanced by amphiphilic Janus nanosheets, Petroleum Science, 2024, 21(6), 4141-4152.
In-situ emulsification and viscosification system of surfactant-assisted Janus nanofluid and its profile control effect, Advances in Geo-Energy Research, 2024, 14(2), 135-146
CO2 switchable Pickering emulsion stabilized by responsive Janus SiO2 Nanoparticles for enhanced oil recovery, ACS Applied Nano Materials, 2024, 7(2): 1835-1844.
Synergistic anionic/zwitterionic mixed surfactant system with high emulsification efficiency for enhanced oil recovery in low permeability reservoirs, Petroleum Science, 21(2), 2024, 936-950
A CO2-responsive Janus SiO2 nanofluid: Integration of enhanced oil recovery and demulsification, Journal of Molecular Liquids, 2024, 412, 125832
Controllable regulation of emulsion stability by a pH-responsive zwitterionic/anionic surfactant system, Fuel 2022, 312, 122921.
Similarity-based laboratory study of CO2 huff-n-puff in tight conglomerate cores, Petroleum Science 2023, 20, 362-369.
Probing surface properties of organic molecular layers by scanning tunneling microscopy, Advances in Colloid and Interface Science 2023, 318, 102956.
Enhanced oil recovery performance of surfactant-enhanced Janus SiO2 nanofluid for high temperature and salinity reservoir, Colloids and Surfaces A: Physicochemical and Engineering Aspects 2023, 657, 130545.
Recent research progress on imbibition system of nanoparticle-surfactant dispersions. Capillarity, 2023, 8(2): 34-44.
Silica-based amphiphilic Janus nanofluid with improved interfacial properties for enhanced oil recovery. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2020, 586, 124162.
Ultra-low interfacial tension biobased and catanionic surfactants for low permeability reservoirs. Journal of Molecular Liquids, 2020, 309, 113099.
Effect of 1-octanol on the stabilization of crude oil emulsions with hydrophobically modified polyacrylamide. Fuel, 2019, 256, 116007.
Synergistic Collaboration between Regenerated Cellulose and Surfactant to Stabilize Oil/Water (O/W) Emulsions for Enhancing Oil Recovery, Energy & Fuels, 2019, 33 (1), 81–88.
Interaction of Amphiphilic Polymers with Medium-Chain Fatty Alcohols to Enhance Rheological Performance and Mobility Control Ability. Energy & Fuels, 2019, 33, 6273-6282.
Study on the oil/water separation performance of a super-hydrophobic copper mesh under downhole conditions. Journal of Industrial and Engineering Chemistry, 2019, 72, 310-318.
SiO2 nanoparticle-assisted low-concentration viscoelastic cationic surfactant fracturing fluid. Journal of Molecular Liquids, 2018, 266, 864-869.
Stability mechanism of O/W Pickering emulsions stabilized with regenerated cellulose. Carbohydrate Polymers, 2018, 181, 224-233.
Spontaneous emulsification via once bottom-up cycle for the crude oil in low permeability reservoirs. Energy & Fuels, 2018, 32, 3119-3126.
Salt effect on hydrophobically modified polyacrylamide-containing crude oil emulsions: stability and rheology study. Colloid and Polymer Science, 2018, 296 (3), 515-527.
Study on the stabilization mechanism of crude oil emulsion with an amphiphilic polymer using the β-cyclodextrin inclusion method. RSC Advances, 2017, 7, 8156-8166.
The rheological characteristics for the mixtures of cationic surfactant and anionic-nonionic surfactants: the role of ethylene oxide moieties. RSC Advances 2017, 7, 13032-13040.
Study on thermally-induced aggregates transformation and its mechanism in cetyltrimethyl ammonium bromide/sodium dodecyl sulfate surfactants mixtures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 522, 628-634.
Electrochemical atomic force microscopy reveals potential stimulated height changes of redox responsive Cu-azurin on gold. European Polymer Journal 2016, 83, 529-537.
Dynamics of Decanethiol Self-Assembled Monolayers on Au(111) Studied by Time-Resolved Scanning Tunneling Microscopy. Langmuir 2013, 29, 2250-2257.
Friction and wear properties of Babbitt alloy 16-16-2 under sea water environment. Tribology International 2011, 44, 1161-1167.
授權(quán)發(fā)明專(zhuān)利
1、 一種超低滲油藏用納米流體滲吸體系及其制備方法與應(yīng)用,ZL202410081642.2
2、 一種具有CO2響應(yīng)性能的兩親性Janus納米顆粒及其制備方法和應(yīng)用,ZL 202311462173.0
3、 一種驅(qū)油劑組合物及其制備方法與應(yīng)用,ZL202211382322.8
4、 一種活性原油封堵體系及其制備方法和應(yīng)用,ZL202311072736.5
5、 一種磺化二氧化硅納米顆粒及其制備方法和應(yīng)用,ZL201811541076.X
6、 pH響應(yīng)型驅(qū)油劑組合物、驅(qū)油劑及其制備方法和應(yīng)用,ZL202011353845.0
7、 一種低滲透油藏驅(qū)油劑,ZL201910379995.X
8、 陰離子型兩親聚合物構(gòu)筑的驅(qū)油組合物及制備方法和應(yīng)用,ZL201910486703.2
9、 一種低滲透油藏自乳化驅(qū)油體系的自乳化篩選方法,ZL201811135982.X
10、 一種復(fù)合驅(qū)油劑及其制備方法和應(yīng)用,ZL201811617943.3
榮譽(yù)獎(jiǎng)勵(lì)
1、 國(guó)發(fā)明協(xié)會(huì)2024年度發(fā)明創(chuàng)業(yè)獎(jiǎng)創(chuàng)新獎(jiǎng),二等獎(jiǎng),2024年
2、 石油科學(xué)《Petroleum Science》優(yōu)秀青年編委,2022年
3、 青島市科技進(jìn)步獎(jiǎng),二等獎(jiǎng),2022年
4、 中國(guó)發(fā)明協(xié)會(huì)2021年度發(fā)明創(chuàng)業(yè)獎(jiǎng)創(chuàng)新獎(jiǎng),二等獎(jiǎng),2021年
5、 中國(guó)技術(shù)市場(chǎng)協(xié)會(huì)金橋獎(jiǎng),一等獎(jiǎng),2020年
學(xué)術(shù)兼職
國(guó)家領(lǐng)軍期刊Petroleum Science青年編委
中科院一區(qū)期刊Advances in Geo-Energy Research青年編委
中國(guó)化學(xué)會(huì)會(huì)員
北京市科協(xié)人才舉薦評(píng)審專(zhuān)家
國(guó)家自然科學(xué)基金、北京市自然科學(xué)基金、和中國(guó)石油科技創(chuàng)新基金等項(xiàng)目評(píng)審專(zhuān)家