
惠鋼
特任副研究員,碩士生導(dǎo)師,校青年拔尖人才
辦公室:北校區(qū)主樓A座A304
E-mail:[email protected]; [email protected]
Google學(xué)術(shù):https://scholar.google.com/citations?user=WR895_oAAAAJ&hl=zh-CN
個(gè)人簡(jiǎn)介
惠鋼,男,山東諸城人,博士/博士后,特任副研究員,碩士生導(dǎo)師,校青年拔尖人才。2021年獲卡爾加里大學(xué)石油工程專(zhuān)業(yè)博士學(xué)位。研究方向包括:非常規(guī)/低滲透油氣開(kāi)發(fā)與油氣人工智能等。主持國(guó)家科技重大專(zhuān)項(xiàng)專(zhuān)題、加拿大卓越研究基金國(guó)家項(xiàng)目課題、全國(guó)重點(diǎn)實(shí)驗(yàn)室開(kāi)放課題、中國(guó)石油勘探開(kāi)發(fā)研究院橫向課題、中國(guó)石油大學(xué)(北京)科研啟動(dòng)項(xiàng)目等縱橫向課題十余項(xiàng)。發(fā)表學(xué)術(shù)論文86篇,其中以第一/通訊作者在Energy/SPE Journal /JGR /Fuel等高水平期刊發(fā)表論文51篇(SCI收錄28篇,EI收錄13篇)。授權(quán)及申請(qǐng)發(fā)明專(zhuān)利5件,出版合著1部。擔(dān)任SCI一區(qū)期刊Petroleum Science、Advances in Geo-Energy Research青年編委,擔(dān)任Processes油氣人工智能專(zhuān)刊和Engeries非常規(guī)油氣開(kāi)發(fā)專(zhuān)刊客座主編。參加SPE/AAPG/SEG/ARMA等知名學(xué)術(shù)會(huì)議并做專(zhuān)題報(bào)告16次。獲中國(guó)石油和化工自動(dòng)化協(xié)會(huì)技術(shù)發(fā)明一等獎(jiǎng)、中國(guó)石油和化學(xué)工業(yè)聯(lián)合會(huì)和科技進(jìn)步一等獎(jiǎng)、加拿大勘探地球物理學(xué)會(huì)先驅(qū)者獎(jiǎng)、國(guó)家優(yōu)秀自費(fèi)留學(xué)生獎(jiǎng)、加拿大阿爾伯塔省優(yōu)秀畢業(yè)生獎(jiǎng)和北京市優(yōu)秀畢業(yè)生等榮譽(yù)。
研究方向
[1] 人工智能甜點(diǎn)優(yōu)選、壓裂優(yōu)化及產(chǎn)量預(yù)測(cè)
[2] 儲(chǔ)層基質(zhì)非均質(zhì)-多尺度天然縫綜合表征
[3] 四維滲流-應(yīng)力場(chǎng)耦合人工縫網(wǎng)擴(kuò)展模擬
[4] 壓裂/CCUS/儲(chǔ)氫/地?zé)嵴T發(fā)地震風(fēng)險(xiǎn)評(píng)估
教育背景
2017.09-2021.10,加拿大卡爾加里大學(xué),石油工程,博士
2008.09-2011.07,中國(guó)石油勘探開(kāi)發(fā)研究院研究生部,油氣田開(kāi)發(fā)工程,碩士
2004.09-2008.07,中國(guó)地質(zhì)大學(xué)(北京),石油工程,本科
工作經(jīng)歷
2022.03 -至今, 中國(guó)石油大學(xué)(北京),特任副研究員
2021.10 - 2022.03,加拿大卡爾加里大學(xué),博士后
2014.07 - 2017.08,中國(guó)石油勘探開(kāi)發(fā)研究院開(kāi)發(fā)所,工程師
2011.07 - 2014.07,中國(guó)石油勘探開(kāi)發(fā)研究院儲(chǔ)層所,助理工程師
榮獲獎(jiǎng)勵(lì)
[1] 中國(guó)石油和化工自動(dòng)化協(xié)會(huì)技術(shù)發(fā)明一等獎(jiǎng)(2024)
[2] 中國(guó)石油大學(xué)(北京)青年拔尖人才(2022)
[3] 國(guó)家優(yōu)秀自費(fèi)留學(xué)生獎(jiǎng)學(xué)金(2022)
[4] 卡爾加里大學(xué)阿爾伯塔省優(yōu)秀畢業(yè)生 (2021)
[5] 加拿大勘探地球物理學(xué)會(huì)先驅(qū)者獎(jiǎng)(2021)
[6] 卡爾加里大學(xué)化學(xué)與石油工程系優(yōu)秀研究生(2020)
[7] 卡爾加里大學(xué)化學(xué)與石油工程系優(yōu)秀助教(2020)
[8] 中國(guó)石油和化學(xué)工業(yè)聯(lián)合會(huì)科學(xué)技術(shù)項(xiàng)目科技進(jìn)步一等獎(jiǎng)(2017)
[9] 中國(guó)石油勘探開(kāi)發(fā)研究院科學(xué)技術(shù)成果獎(jiǎng)一等獎(jiǎng)(2016)
[10] 第四屆中國(guó)油氣藏開(kāi)發(fā)地質(zhì)大會(huì)優(yōu)秀論文(2016)
[11] 中國(guó)石油勘探開(kāi)發(fā)研究院第一屆青年技能競(jìng)賽一等獎(jiǎng)(2014)
[12] 第三屆中國(guó)油氣藏開(kāi)發(fā)地質(zhì)大會(huì)優(yōu)秀論文(2014)
[13] 中國(guó)石油勘探開(kāi)發(fā)研究院第六屆青年英語(yǔ)學(xué)術(shù)交流會(huì)一等獎(jiǎng)(2012)
[14] 2010年SPE亞太地區(qū)學(xué)生論文大賽優(yōu)秀獎(jiǎng)(2010)
[15] 北京市高等學(xué)校優(yōu)秀畢業(yè)生(2008)
[16] 中國(guó)地質(zhì)大學(xué)(北京)十佳學(xué)生(2007)
科研項(xiàng)目
[1] 2025/05-2030/12,超深裂縫性油氣藏甜點(diǎn)識(shí)別產(chǎn)能評(píng)價(jià)及應(yīng)用技術(shù),國(guó)家科技重大專(zhuān)項(xiàng)-油氣重大專(zhuān)項(xiàng),在研,副專(zhuān)題長(zhǎng)
[2] 2025/01-2029/07,廣東-海南中高溫地?zé)豳Y源成因與評(píng)價(jià)利用,國(guó)家科技重大專(zhuān)項(xiàng)-油氣重大專(zhuān)項(xiàng),在研,副專(zhuān)題長(zhǎng)
[3] 2025/08-2026/12,儲(chǔ)層連續(xù)尺度非均質(zhì)性表征方法,中國(guó)石油勘探開(kāi)發(fā)研究院油田開(kāi)發(fā)所,在研,主持
[4] 2025/07-2025/11,致密砂巖儲(chǔ)層可動(dòng)水飽和度變化規(guī)律實(shí)驗(yàn),中國(guó)石油勘探開(kāi)發(fā)研究院氣田所,在研,主持
[5] 2025/01-2026/12,基于最優(yōu)算法與主控因素的頁(yè)巖氣井EUR智能預(yù)測(cè),油氣藏地質(zhì)及開(kāi)發(fā)工程全國(guó)重點(diǎn)實(shí)驗(yàn)室,在研,主持
[6] 2025/01-2025/06,基于人工智能驅(qū)動(dòng)的多源數(shù)據(jù)挖掘的頁(yè)巖油低產(chǎn)水平井增產(chǎn)潛力評(píng)價(jià),中國(guó)石油勘探開(kāi)發(fā)研究院壓裂中心,結(jié)題,主持
[7] 2024/10-2026/05,基于海量信息數(shù)據(jù)挖掘的深層頁(yè)巖氣產(chǎn)能主控因素及預(yù)測(cè)研究,油氣藏地質(zhì)及開(kāi)發(fā)工程國(guó)家重點(diǎn)實(shí)驗(yàn)室,在研,主持
[8] 2024/09-2025/03,瑪南風(fēng)城組儲(chǔ)層沉積特征綜合解釋?zhuān)袊?guó)石油勘探開(kāi)發(fā)研究院致密油所,結(jié)題,主持
[9] 2024/05-2026/04,超低滲透注水開(kāi)發(fā)油藏水平井裂縫時(shí)變規(guī)律及滲流機(jī)理研究,低滲透油氣田勘探開(kāi)發(fā)國(guó)家工程實(shí)驗(yàn)室,在研,主持
[10] 2023/01-2025/12,Duvernay頁(yè)巖壓裂誘發(fā)地震觸發(fā)機(jī)理研究,中國(guó)石油大學(xué)(北京), 青年拔尖人才科研啟動(dòng)項(xiàng)目,結(jié)題,主持
[11] 2023/03-2023/10,特低滲透油藏四維地應(yīng)力場(chǎng)與裂縫建模,中國(guó)石油勘探開(kāi)發(fā)研究院開(kāi)發(fā)所,結(jié)題,主持
[12] 2022/08-2023/12,Duvernay頁(yè)巖水力壓裂誘發(fā)地震的流體-地質(zhì)力學(xué)-壓裂綜合模擬研究,中國(guó)石油勘探開(kāi)發(fā)研究院亞太所,結(jié)題,主持
[13] 2017/09-2021/10, 加拿大西部盆地誘發(fā)地震預(yù)測(cè)模型開(kāi)發(fā),加拿大卓越研究基金國(guó)家項(xiàng)目子課題,結(jié)題,主持
[14] 2019/09-2021/09,中東孔隙型碳酸鹽巖地質(zhì)建模配套技術(shù)研究,中國(guó)石油勘探開(kāi)發(fā)研究院院級(jí)課題,結(jié)題,副課題長(zhǎng)
[15] 2016/01-2017/08, 低滲儲(chǔ)層裂縫網(wǎng)絡(luò)表征技術(shù),中石油“十三五”油氣田開(kāi)發(fā)重大項(xiàng)目子課題,結(jié)題,副課題長(zhǎng)
[16] 2015/01-2017/08,青海昆北油田切12區(qū)檢查井綜合研究,中國(guó)石油青海油田技術(shù)服務(wù)項(xiàng)目,結(jié)題,主持
[17] 2012/01-2014/12,特低滲透油藏水淹層測(cè)井評(píng)價(jià)及水淹規(guī)律研究,中國(guó)石油勘探開(kāi)發(fā)研究院院級(jí)課題,結(jié)題,專(zhuān)題長(zhǎng)
部分代表性論文(第一作者)
[2] Intricate unconventional fracture networks provide fluid diffusion pathways to reactivate pre-existing faults in unconventional reservoirs. Energy. 2023, 282. 128803. https://doi.org/10.1016/j.energy.2023.128803. (SCI一區(qū), IF=9.0)
[3] Integrated evaluations of high-quality shale play using core experiments and logging interpretations. Fuel. 2023, 341, 127679. https://doi.org/10.1016/j.fuel.2023.127679. (SCI一區(qū), IF=7.4)
[4] A synthetical geoengineering approach to evaluate the largest hydraulic fracturing-induced earthquake in the East Shale Basin, Alberta. Petroleum Science. 2023, 20(1):460-473. https://doi.org/10.1016/j.petsci.2023.01.006. (SCI一區(qū), IF=6.0)
[5] A machine learning-based study of multifactor susceptibility and risk control of induced seismicity in unconventional reservoirs. Petroleum Science. 2023, 20(4):2232-2243. https://doi.org/10.1016/j.petsci.2023.02.003. (SCI一區(qū), IF=6.0)
[6] Investigation on Two Mw 3.6 and Mw 4.1 Earthquakes Triggered by Poroelastic Effects of Hydraulic Fracturing Operations near Crooked Lake, Alberta. Journal of Geophysical Research: Solid Earth. 2021, 126, e2020JB020308. https://doi.org/10.1029/2020JB020308. (SCI二區(qū),Nature Index期刊)
[7] Comprehensive characterization and mitigation of hydraulic fracturing-induced seismicity in Fox Creek, Alberta. SPE Journal. 2021, 26(5):2736-2747. https://doi.org/10.2118/206713-PA. (SCI小類(lèi)二區(qū))
[8] An integrated approach to characterize hydraulic fracturing-induced seismicity in shale reservoirs, Journal of Petroleum Science and Engineering, 2021, 196, 107624. https://doi.org/10.1016/j.petrol.2020.107624. (SCI二區(qū)TOP)
[9] Influence of hydrological communication between basement-rooted faults and hydraulic fractures on induced seismicity: A case study. Journal of Petroleum Science and Engineering, 2021, 206, 10904. https://doi.org/10.1016/j.petrol.2021.109040. (SCI二區(qū)TOP)
[10] Production forecast for shale gas in unconventional reservoirs via machine learning approach: Case study in Fox Creek, Alberta, Journal of Natural Gas Science and Engineering, 2021, 94, 104045. https://doi.org/10.1016/j.jngse.2021.104045. (SCI二區(qū))
[11] Insights on controlling factors of hydraulically induced seismicity in the Duvernay East Shale Basin. Geochemistry, Geophysics, Geosystems, 2021, 22, e2020GC009563. https://doi.org/10.1029/2020GC009563. (SCI二區(qū))
[12] Role of Fluid Diffusivity in the Spatiotemporal Migration of Induced Earthquakes during Hydraulic Fracturing in Unconventional Reservoirs. Energy & Fuels, 2021, 35, 17685-17697. https://doi.org/10.1021/acs.energyfuels.1c02950. (SCI二區(qū))
[13] Mitigating risks from hydraulic fracturing-induced seismicity in unconventional reservoirs: case study. Scientific Reports. 2022, 12, 12537. https://doi.org/10.1038/s41598-022-16693-3. (SCI二區(qū))
[14] Strike–Slip Fault Reactivation Triggered by Hydraulic-Natural Fracture Propagation during Fracturing Stimulations near Clark Lake, Alberta. Energy & Fuels. 2024, 38, 19, 18547–18555. https://doi.org/10.1021/acs.energyfuels.4c02894. (SCI三區(qū))
[15] An Integrated Method to Mitigate Hazards from Hydraulic Fracturing-Induced Earthquakes in the Duvernay Shale Play. SPE Reservoir Evaluation & Engineering-Formation Evaluation. 2023, 26(2): 382–391 https://doi.org/10.2118/210287-PA . (SCI三區(qū))
部分代表性論文(通訊作者)
[1] Comprehensive Characterization of Hydraulic Fracture Propagations and Prevention of Pre-existing Fault Failure in Duvernay Shale Reservoirs. Engineering Failure Analysis. 2025, 173, 109461, https://doi.org/10.1016/j.engfailanal.2025.109461. (SCI二區(qū))
[2] Coupled 4D Flow-Geomechanics Simulation to Characterize Dynamic Fracture Propagation in Tight Sandstone Reservoirs. ACS Omega, 2025, 10, 1, 1735-1747. https://doi.org/10.1021/acsomega.4c09805.(SCI三區(qū))
[3] Experimental Analysis of Gas Injection Feasibility and Evaluation of Enhanced Recovery Potential in Mahu Tight Conglomerate Reservoirs. ACS Omega, 2024, 9, 46588–46599. https://doi.org/10.1021/acsomega.4c08650.(SCI三區(qū))
[4] Production-Increase Potential Evaluations after Refracturing Low-Shale-Oil-Producing Wells via Machine-Learning-Driven Multisource Data Mining. ACS Omega, 2025. https://doi.org/10.1021/acsomega.4c08650.(SCI三區(qū))
會(huì)議報(bào)告
[1] Triggering Mechanisms and Mitigation Strategies of CO2 Injection-Induced Seismicity in the Canada Weyburn Field, SPE Asia Pacific CCUS Conference and Exhibition, 2025
[2] Insights On the Underlying Mechanisms of CO2 Injection-induced Seismicity In The Weyburn Oilfield, SPE Advances in Integrated Reservoir Modelling and Field Development Conference and Exhibition, 2025
[3] Tight Gas Production Prediction in the Southern Montney Play Using Machine Learning Approaches. SPE Canadian Energy Technology Conference, 2024
[4] Integrating deterministic geological model with multimodal machine learning to predict shale productivity. InterPore, 2024
[5] An Integrated Geology-Engineering Approach to Duvernay Shale Gas Development: From Geological Modeling to Reservoir Simulation. SPE Canadian Energy Technology Conference, 2023
[6] Integration of mineralogy, petrophysics, geochemistry and geomechanics to evaluate unconventional shale resources. SPE Asia Pacific Oil & Gas Conference and Exhibition, 2022
[7] An integrated method to mitigate risks from hydraulic fracturing-induced seismicity in the Duvernay shale play. SPE Annual Technical Conference and Exhibition, 2022
[8] Coupled poroelastic modeling to characterize the 4.18-magnitude earthquake due to hydraulic fracturing in the East Shale Basin of Western Canada. SPE Virtual Reservoir Simulation Conference, 2021
[9] A novel coupled approach for fracturing-induced earthquake characterization: case study. SPE Virtual Hydraulic Fracturing Technology Conference and Exhibition, 2021
[10] Coupled Flow-Geomechanics Modeling to Characterize the Hydraulic Fracturing-Induced Earthquake near Crooked Lake, Alberta. SPE Virtual Canada Unconventional Resources Conference, 2020
[11] Integration of geophysics, geomechanics and hydrodynamics to characterize induced seismicity triggered by hydraulic fracturing in the Duvernay Reservoir near Fox Creek, Alberta. 53rd US Rock Mechanics Geomechanics Symposium, New York, USA, 2019
[12] Combination of geomechanics, stress field with reservoir static and dynamic performance to characterize dynamic fractures in ultra-low permeability reservoirs. 2017 IFEDC, Beijing, 2017
[13] 第四屆中國(guó)油氣藏開(kāi)發(fā)地質(zhì)年會(huì),青海敦煌(優(yōu)秀論文獎(jiǎng)),2016
[14] Integration of Geomechanics, Stress Field and Reservoir Production to Predict Dynamic Fractures Behavior of Tight Sandstone Reservoir. Lecture on AAPG|SEG 2016 ICE, Barcelona, Spain, 2016
[15] 第三屆中國(guó)油氣藏開(kāi)發(fā)地質(zhì)年會(huì),山東青島(優(yōu)秀論文獎(jiǎng)),2014
[16] Facies Controlling Modeling and Prediction for Favorable Reservoirs. Lecture on Postgraduate Division at Asia Pacific Regional Student Paper Contest in 2010 APOGCE, Brisbane, Australia, 2010
專(zhuān)利
[1] 一種基質(zhì)-裂縫-斷層多重介質(zhì)表征方法和裝置,申請(qǐng)中 (2024)
[2] 壓裂液注入引發(fā)斷層失穩(wěn)的流固耦合模擬方法和裝置,申請(qǐng)中 (2023)
[3] 人工壓裂縫三維擴(kuò)展模擬方法,申請(qǐng)中(2022)
[4] 裂縫識(shí)別方法和裝置,已授權(quán)(2018)
[5] 一種特低滲透油藏水淹層含水飽和度計(jì)算方法,已授權(quán)(2017)
學(xué)術(shù)兼職
[1] SPE/ACS/AGU/SEG/ARMA/CSUR 會(huì)員
[2] SCI一區(qū)TOP期刊Petroleum Science青年編委(2022-)
[3] 中科院一區(qū)TOP期刊《Advances in Geo-Energy Research》青年編委(2022-)
[4] EI期刊《中國(guó)石油勘探》第一屆青年編委(2025-)
[5] 中文核心《東北石油大學(xué)學(xué)報(bào)》青年編委(2025-)
[6] Processes油氣人工智能專(zhuān)刊客座主編(2025-2026)
[7] Energies非常規(guī)油氣專(zhuān)刊客座主編(2024)
[8] Engineering Applications of Artificial Intelligence, Expert Systems With Applications, Water Resources Research, Journal of Cleaner Production, Petroleum Science等SCI一區(qū)期刊審稿人